由第一章 中的表1可以看到,伽玛辐射所转移的能量平均要比可见光辐射强100万倍。这种辐射因而有着强穿透性,如果不”是被地球的上层大气阻挡,它对地球上的生物将有致命危险。观测宇宙伽玛辐射的一种方法正是把大气本身作为探测器,伽玛射线光子在穿过大气上层时,会把自己的能量转变成物质,产生粒子和反粒子的簇射。这些粒子在产生的瞬间的运动速度等于真空中的光速,因此就比在空气中穿过的光还要快。这种“超相对论”粒子进人地球的电磁场,类似于超声速的飞机那样,也会形成冲击波,不过不是产生声撞击,而是产生一种可见光闪耀,称为切论可夫(Cerenkov)辐射。这种辐射很容易在地面上探测到,因而长期以来被用以测量从宇宙空间到达地球的伽玛辐射流。
由切伦可夫“光”探测到的伽玛辐射暴平均每年有几次,但是,它们并不具有微型黑洞爆发的特征。当然,微型黑洞并不是天空中唯一的伽玛辐射源,事实上,除了这种突然的辐射爆发外,还有一种强度较低的连续伽玛辐射已被在大气以外运转的卫星上的仪器探测到。这个重要的发现表明,许多天文现象都能向星际空间发射高能辐射。关于这种弥漫的背景伽玛辐射的起源还在争论之中,不过多数人相信是由中子星(见第16章)这样的致密星,或者在更大得多的尺度上由活动星系核所产生的。
尽管如此,仍可能有许多微型黑洞已在不久前爆发,并为背景伽玛辐射作出了部分贡队一个名为SASZ的卫星已对弥漫伽玛辐射作了精确测量。这种辐射的强度非常低,即使假设全都是来自黑洞爆发,平均说来每立方光年体积内包含的原初黑洞也不可能多于200个。这样看来,最靠近地球的做到黑洞也在远离太阳系的地方。
原初黑洞的真实密度还要小得多,因为可以作出比基于伽玛辐射的推断更为严格的限制。微型黑洞爆发时发射的粒子将与银河系的磁场作用,产生出特征射电波。由于对射电波的探测比对伽玛辐射要容易得多,微型黑洞的爆发应当能用大型射电望远镜探测到,然而却从来没有过。这一事实对微型黑洞爆发的额度作出了一个很严格的限制:平均每立方光年体积每300万年里不可能超过一次。
总之,质量像一座山的原初微型黑洞可能存在,但是极为稀少。
引力幻景
微型黑洞爆发的踪迹难寻,并不排除质量超过10”克因而尚未爆发的原初黑洞的存在。这样的黑洞又怎样探测呢?
由第10章中描述的“照明”实验已经看到,即使是一个完全孤立的黑洞也能使来自遥远源的辐射聚焦,起着“引力透镜”的作用。
假设地球、一个黑洞和一颗恒星碰巧排在一条直线上,按照广义相对论定律,黑洞附近的时空弯曲将使来自远处恒星的光在到达地球之前沿几条可能路径之一运动(图56)。于是,望远镜就必然会看到同一个光源的几个像:一个对应着弯曲最少的光线的“主”像,以及若干个对应着弯曲较严重的光线的“次”像。这种表观像相对于真实像的移动就叫做引力幻景。
有时在沙漠里可以见到的幻景是这样造成的:由沙里散发出的热使不同层次空气的温度得到不同的升高,因而不同气层就有不同的折射率,由沙所反射的光线就会沿不同的路径到达远处的旅行者,于是就会形成各种神秘的幻景,可以被看作是绿洲、城市或是海洋,完全取决于旅行者最想看到什么。
探测由宇宙空间的弯曲所造成的引力幻景无疑要困难得多,不妨先考虑一下银河系外的巨型黑洞的情况。远处的源,例如类星体或宇宙背景辐射(这种辐射的确是唯一的在天空中到处都存在的电磁辐射源),就可能会被黑洞的引力透镜效应所影响。
天文学家已经掌握了一批引力幻景给出类星体多重像的实例,但是,造成这些幻景的并不是巨型黑洞,而只不过是中介星系而已。所有的物质集结都能使时空连续体出现一定程度的弯曲,因而都能起引力透镜作用。大多数测量(像的分离等等)只能给出透镜的质量,所以如果透镜本身没有被探测到,当然就不可能说出那究竟是个巨型黑洞还是个暗弱的星系。
1985年,一对名为哈利德(Hazard)1146+lllB和C的类星体在天文界引起了轰动。它们的红移乍看起来是相同的,因而很像是同一个天体被一个插入透镜造成的双像。但是与其他引力幻景不同的是,哈利德1146+fll有着极大的角分离:2.6角分,比已知的其他多重类星体要大20倍。如果它们确是同一个天体的像,引力透镜的质量就得相当于几千个星系。
有三种类型的天体可以成为这种大质量的透镜:极密集的星系团,“超巨型”黑洞,以及“宇宙弦”。没有任何观测证据显示在这个方向上座落有星系团。“宇宙弦”是基本粒子理论家发明的一种优美构造,这是一种在宇宙的最初时刻形成的、很长而半径几乎为零的弦,能够输送引力能。但是.没有任何实验方案可以用于证实这种东西的存在,或是证实这个理论的合理。于是只剩下黑洞,它反而成了最少离奇性的解释。哈利德1146+111的情况所需要的黑洞质量在”2到10”M之间,而且只能是原初黑洞,这个巨大的质量远远超出黑洞学家的想象
但是在接受这种极端的解释之前,必须肯定哈札德1146+111的确是引力幻景。更精确的测量表明,它们的光谱并不一样,也就是说这两个像并不是源于同一个类星体,而是相互靠得很近的两个类星体。这是宇宙弦和超黑洞的梦的终结。这里细述这个故事,只是想说明科学研究中常有这种混乱。一个轰动性发现的宣布(并引起新闻媒介的注意),其背后常常只是对不精确的资料作了错误的解释,随后所作的更好的测量又把这个发现送回到“正常”的行列,从而再次证明简单性原理的中肯:最“经济”的即最“平凡”的(没有任何贬义)假设,几乎总是正确的。
在巨型黑洞之后,再来看看恒星级质量黑洞的情况(包括原初的和后来形成的)。这种黑洞的直径只有几公里,所以即使是处在我们银河系内并且近到只有几十光年的距离上,其视直径也会很小,以至与一颗更远处的恒星排成一线的可能性就微乎其微。即使这种排列真的发生,由黑洞质量所决定的恒星不同像之间的角分离,也会小得使目前和将来的望远镜无法分辨,那么就毫无希望了吗?不是。因为透镜(即使是微型的)效应,并不只限于造出多重像,而是还能使像的强度增大,使光谱变形。考虑我们银河系或邻近星系的晕里的一个微型透镜,它相对于遥远的(因而被看作是固定的)类星作背景就有很缓慢的运动,排列成线的可能性就不再是可忽略不计的了,引力幻景就会使类星体的光度和光谱出现短暂的变化。这个主意还挺不错,以至于有些学者把整个一类有活动核心的星系(见第对章)都解释为微型透镜的积累效应。几个深入细致的观测计划正在进行之中,其目的主要倒不是探测恒星级黑洞,而是要证实在星系晕里聚集着大量很小而暗弱的恒星。
暗物质
现代宇宙学尚未解决的问题之一是所谓下落不明的质量。对星系运动的观测表明,“可见”物质(无论是在光学、射电、红外或X射线波段可见)只占总质量的一部分。可以举一个简单的例子来描述这个问题。许多星系聚集成团,形成束缚的引力结构,并不散开到周围的宇宙介质里。如果这些星系团只由可观测到的单个星系和星系际气体组成,则引力将不足以使它们聚集在一起,因此就必然存在暗物质,在电磁辐射这种形式上是不可见的,但是能提供引力以维持星系团的存在。
黑洞显然是这种暗物质的候选者(最新的说法是“褐矮星”,有时被不大礼貌地称为“衰败星”,指的是质量小到只有太阳的百分之一,因而核心不能发生热核反应的暗弱天体。关于微透镜的观测计划的基本目的正是要找到这种星),但是,各种由观测得出的制约排除了大量巨型黑洞聚集的可能性(如在第门章将要看到的,很可能所有星系的核心都有一个质量很大的黑洞,但要解决下落不明的质量问题,在星系核外就还得有许多巨型黑洞)。比如说,如果质量远大于100万M的黑洞存在于旋涡星系的晕里,即在聚集着绝大部分可见物质的星系核球和星系盘(见第17章)之外,这种黑洞的存在将至少会以两种方式表现出来:第一,它们将作为引力透镜而使遥远恒星的像多重化;第二,它们将使星系盘中恒星的速度增大,因而使盘变厚。然而这些现象都从未被观测到。
另一方面,质量为100万M的原初黑洞存在的可能性并未被排除。绝大多数星系都是在宇宙历史的早期形成的,其核心的黑洞也可能是原初型的,甚至有可能黑洞正是使星系得以形成的种子。第十六章 X射线星
孤立的恒星级黑洞,对于热辐射形式的蒸发来说质量太大,对于使遥远恒星的光线弯曲来说质量又太小,因而确是不可见的。
但是,黑洞从来就不是完全孤立的,它身居星际介质之中,吞噬周围的物质来喂养自己,这样的黑洞总是会留下痕迹,被吞噬的物质在消失之前会发出电磁辐射。不过,星际气体过于稀薄,产生的光度太弱,一个10M的黑洞在吸进周围气体时只能产生像一颗孤立白矮星那样暗淡的光,最多只能在见光年的距离上被探测到。而即使在银河系里有10亿个黑洞,最靠近地球的恐怕也在100光年以外。
那么,对希望探测黑洞的天文学家来说还留有什么余地吗?回答是双星系统。单个恒星只是少数,作为恒星残骸的黑洞也是如此。许多黑洞应当是在双星系统之中,尽管双星系统中的黑洞甚至